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Abstract

This paper investigates the effects of colored noise on the accuracy of batch least squarm parameter estimates

with applications to attitude determination cases. The standard approaches used for estimating the accuracy

of a computed attitude commonly assume uacorrelated (white) measurement noise, while in actual flight

experience measurement noise often contains significant time correlations and thus is "colored." For

example, horizon scanner nuutsurements from low Earth orbit have been observed to show cofrelatiom over

many minutes in response to large scale atmospheric phenomena.

A general approach to the analysis of the effects of colored noise is investigated, and interpretation of the

resulting equations provides insight into the effects of any particular noise color and the worst case noise

coloring for any particular parameter estimate. It is shown that for certain cases, the effects of relatively
short term correlations can be accommodated by a simple correction factor. The errors in the predicted

accuracy assuming white noise and the reduced accuracy due to the suboptimal nature of estimators that do

not take into account the noise color characteristics are discussed. The appearance of a variety of sample

noise color characteristics are demonstrated through simulation, and their effects are discussed for sample

estimation cases. Based on the analysis, options for dealing with the effects of colored noise are discussed.

INTRODUCTION

,equirement for flight dynamics support is the estimation of the accuracy of attitude and orbit solutions, and this

uires a knowledge of the measurement noise characteristics. Often, the measurement errors are assumed to be

ependent and identically distributed, what engineers commonly call "white" noise. One reason this assumption

nade is simply that noise of this nature is easy to handle in estimation algorithms. However, this is not always

orrect assumption for real spacecraft data. This paper investigates the implications of that assumption,

cusses a formulation for calculating the true parameter uncertainty when the noise is not white, and shows how

interpret the effects of various noise colors in some representative cases.

:olored" noise refers to any noise that is not white, i.e., that has correlations related to the time between

.asurements of the same type. "Batch" refers to the computation of fixed parameters using data over a given

te span in a single solution.

1 COLORED NOISE IN SPACECRAFT DATA

acecraft horizon scanner data provides a clear example of measurement noise that is obviously non-white, and

r which an explanation for long term correlations of various frequencies is apparent. Figure 1 shows a sample

mner data from Seasat and Landsat. In the Seasat mission, the bumps in the data were directly correlated with

infrared scanner "seeing" a high altitude cloud in the threshold adjust region of the horizon detection logic

eference 1). Thus large scale atmospheric phenomena contributed a low-frequency "noise" to the scanner

•.zsurements. In the Landsat mission, the "bumps" could not be correlated with specific cloud features; however

ag term correlations are clearly present (note that the highest frequency component of the Landsat data noise

_s filtered by 128 point averaging for data volume reduction; the remaining noise variations clearly have longer

rrelations than white noise.) For Landsat some of the very long term variability was associated with seasonal
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(s) SEA3AT DATA

SAMPLE ORBIT

(b) LANDSAT DATA

SAMPLE ORBIT

Figure 1. Sample Horizon Scanner Data from Seasat and Landsat

random stratospheric temperature variations (Reference 2). Ever since horizon scanners have first been buff

manufacturers have worked to make them less sensitive to clouds in the lower atmosphere and to trigger on tt

more stable stratosphere, but yet it seems natural that this sensor may remain sensitive to large scale "weathej

phenomena to some extent and thus have long term correlations in the data.

Other sources of long term correlations in sensor measurements can include any modelJ'_g uncertainties such

sensitivities to stray light, magnetic field changes (external or internally generated), or temperature variatio_
Certainly the line between noise and systematic errors can become blurred, but the low frequency noise model fc

some types of possible modeling errors can be useful. Another source of effective low frequency noise can b

spacecraft dynamics modeling uncertainties or the effects of gyro noise. However, the similarity of the effects c

these noise types with low frequency measurement noise will not be developed in this paper.

1.2 BRIEF LITERATURE REVIEW

The equations for treating colored noise in batch least squares estimation have long been known and are given i_!

numerous textbooks. It is a matter of applying an optimal data weighting based on the expected correlations

However, as a practical matter, many actual estimation systems simply assume white noise. Although ever_
relevant text reviews the optimal, maximum likelihood weighting, and the simplification with the white noise

assumption, there is surprisingly little discussion of the impact of this simplifying assumption and what it can meat

in practical batch estimation problems. Furthermore, there is a relatively simple formula for computing th(

accuracy of an estimator that assumes white noise while actual correlations are present. This formula does no;

seem to be noted, let alone its relevance emphasized, in most texts on estimation. The general form of thi_

equation, giving the errors due to a difference between any assumed and actual noise covariance, is given in th_

mathematics for the general model for attitude determination error analysis developed at GSFC ('Reference 3).

However, in the current system implementation based on this analysis, only white noise assumptions are allowed

(Reference 4). References 5 and 6 both mention this formula and discuss the implications briefly by an example. It

is likely that more attention to this problem may be contained in the broad literature on estimation in various fields,

but its consideration (particularly for flight dynamics applications) seems to be very infrequent.

There is notable available literature on handling colored noise in Kalman filter applications. Problems in handling

colored noise in continuous time filters were first presented and resolved by Bryson and Johansen in 1965

(Reference 7), and further developments were provided and a few practical applications were discussed in papers_

that followed (References 8 through 12). Sections on handling "colored noise" in Kalman filters are found inl

books on estimation (e.g., References 5, and 13 through 15) published in the early 70's. These references give

prescriptions for optimally filtering the data given colored noise. However, these references do not generally I

address a sensitivity analysis to the "suboptimal" white noise assumption in covariance analysis, which is the

problem discussed in this paper in the batch estimation case.
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marion and the spectral analysis of data in general is a field with a long history, wide application, and

;iderable development. Today, voluminous literature on spectral analysis and estimation is found in

munications engineering, statistical time series analysis, time standards stability, and speech dm processing,

ng other fields. Although effort was made to locate relevant references, an exhaustive survey is by no means

ned.

MATTIEMATICAL DEVELOPMENT

OPTIMAL WEIGHTED LEAST,.qQUAJL_

_ssume a iinearized model of our measurements, z,

z,,Hx+¢
(1)

re H is the mat_ of partials of the measurements with respect to the state parameters, x is the state vector of

meters, and e is the vector of measurement errors. Basic weighted batch least squares provides an estimate of

;rate parameters, i,

x = (HT_I"I) "1 H T
0

; estimate is optimal if the weight matrix is the inverse of the measurement noise covariance matrix

W=R "1

(2)

(3)

:re R is the expected noise covarience

R=E [¢ c T] (4)

accuracy of an estimate is given by the state ¢ovarian_ matrix

p . (HTV_)"_ (5)
0

se equations are the maximum likelihood estimate, or best linear unbiased estimate, and they are equivalent to

Bayesian estimate if no a priori uncertainty information is available.

WHITE NOISF_,/UNWBIGIITED LEAST SQUARES

7e know that our measurememsare independentand uncorrelated, then R is a diagonal matrix. If we make the

itional assumption that all the measurements have the same variance, then we may write R as a scalar times the

_tity matrix, I.

R = o.Z I

• is case the estimator (2) simplifies to

w = -..._1 !
Z

o"

" HtH H tx=( )-1 z

(6)

(7)

(8)

1 the covariance of our estimate is given by

P
U

• o.z (HrH) "1 (9)
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This simplification is commonly made in many systems, including those for attitude determination. Two reaso

often given are: (1) A priori measurement statistics may not be available, and it is often just assumed

independence of the measurements is a good model, and (2) It is also sometimes observed that optimal weighti_

requires computing the inverse of the measurement noise covariance, and this may not be practical when handli_

large amounts of data. This is an additional motivation for assuming equal weighting is good enough. (It is n

widely noted that one basic colored noise model does have an exact form for its inverse - see Equation 23.)

It is the purpose of this paper to investigate the impact of this simplification on the expected covariance of o,

estimate. This can be particularly important for prelaunch studies when we want to predict how well our estimat,

will perform. It also can be of importance for postlaunch analysis if we want to use the estimators predict,

covariance as an indicator of the actual attitude accuracy.

2.3 UNWEIGHTED ESTIMATOR WITH COLORED NOISE

The expected variance of the unweighted least squares estimator in the presence of correlated measurements may !

derived directly by taking the expected covariance of estimator (8) assuming noise covariance R.

PS - (HTH) "I HT R H (HTH) "I (

Thus if we have a model for the actual noise covariance, R, we can directly compute the error of our unweighte

estimator. This is the main formula used to derive results presented in this paper. As observed in the literamx

review, it is remarkable how seldom this equation is noted.

As we shall see, interpreting results from this formula requires some careful attention. Note that there are as man

terms in the noise covariance as there are points being fit in the least squares estimation. This gives a tremendot:,

amount of power in terms of possible assumptions about our noise model. For example, this formula can be use
to evaluate the effects of random biases as well as noise in the traditional sense.

In the terminology often used in error analysis, the unweighted least squares is considered a suboptimal estimator

the context that actual correlations are present in the noise (and hence the choice of subscript). Note however th_

we are not primarily concerned here with the actual performance of this suboptimal estimator relative to the optima

one, although we will make observations about this difference (1' - Po)" Instead we will be concerned mainly abou
the erroneous prediction of the suboptimal estimator accuracy assuming white noise relative to its actual accurac:

given colored noise (P. - P,,). As we shall see, this suboptimal estimator does not generally do badly relative to th_
optimal one, but the prediction of its accuracy erroneously assuming white noise can be quite unrealistic.

It is noted that a more general equation for error analysis can be obtained by taking the expected covariance for th_

weighted least squares estimator when the true noise covariance is different than the expected noise covariance. We

will not, however, 1_.. _t that more general problem here.

2.4 CORRECTION FACTOR INTERPRETATION

A very interesting and elegant interpretation can be made of the correction factor between white noise predicted

accuracy and accuracy in colored noise. We take Equation (10) and break it into two parts, one giving the white

noise predicted covariance, P, and a correction matrix C, so that
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)r simplicity, consider estimating a single parameter from a single rime series of correlated measurements. Let

_bethetruevarianceof themeasurementsandp(k) be theautocorrelationas where k givesthesample lag.P is

,rmalizedsoP = I,andP(k) =P(-k) due to thepropertiesof the autocorrelationfunction(seeSection3 for
:>rediscussionof noiseprope_ies).The measurementnoisecovarianceis

1 p: p.

Pl I

(12)
"Pl

P, Pl 1

_d the partials matrix H is now a vector which we shall call h and refe_ to as our "basis vector" since it is the

nction we are fitting in a least squares sense. Thus our scalar correction factor is

1 h _ R h (hTh) "_
c = 03 (I3)

N-!

_ritten out as a summation, we can write

(14)

_": hjhj,!

O"T j=O

°" 7" P' ;--"
m i=-N _ h 2j

jmo

) this form, the inner sum in the numerator may be recognized as the convolution of the basis vector with its

_flection, or equivalently as the autocovariance function for the basis vector. 'lee sum shown in the denominator

_rmalizes the basis vector autocovariance to unity at zero lag, and thus this whole expression may be considered
q a "basis vector autocorrelation" sequence, which we will labelrL The correction factor is the ratio of the actual

) expected variance times the dot product or projection of two normalized sequences: the true noise

atocorrelation, P, tad the basis vector autocorrelation, _.

¢e2

= 1'

ii

"he ratio of variances is just a correction for the assumed and true noise variance. If we had assumed the correct

ariance, but had ignored the correlations at non-zero lags, the correction would be just the indicated projection.

3sing Parseval's theorem gives

,'his projection may be interpreted in the frequency domain as well. Using Paneval's theorem as applied to finite

eries, the product of terms in the time domain is related to the product in the frequency domain. This is a special

me of the fact that the product in the time domain is a convolution in the frequency domain, but where we are

_ncerned the "DC" component in the time domain which is given by the spectrum evaluated at zero frequency.
,et the Discrete Fourier Transform be defined as

N-I

Z 2RnkDF'T (f) = f e'J_ -'- (16)
n M

h-O

1 ----"' (17)• * _ Df'T(p) • DfT(_)N
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The transform of the autocorrelation is the power spectrum. Thus the correction factor is related to the projectk

of the true noise power spectrum and what we may define as the "basis vector power spectrum."

The easiest way to apply this interpretation to a multiple parameter case is to choose a set of orthogonal ba_

vectors so that Pw, C, and P, are all diagonal matrices and the parameter estimates can be decoupled. The use

this interpretation of the correction factor will be discussed with some specific examples in Sections 4 and 5.

2.5 UNEAR COMBINATIONS OF COLORS

At times it will be useful to consider the noise covariance as the combination of two different noise types. In th
case, since Equation (10) is linear in R, we have

Ps = (HTH}'I HT(RI+Rz) H (HTH) "1

= (HtH}-I H T R1 H {HTH)'t + (HTH}-I H T R2 H (HTH)'I (

Thus if the effects of two independent noise sources are evaluated, the total effect from both can be computed

the linear sum of the variances due to their separate effects. (Note that the combination is linear in the varianc,
not linear in the standard deviation of the noise.)

3. COLORED NOISE SAMPLES

This section defines some specific types of colored noise for analysis and provides examples for illustration.

3.1 NOISE SIMULATION AND CHARACTERIZATION

Stationary noise of any desired spectrum can be obtained by passing white noise through an appropriate filter. An

stable time invariant linear filter will color a white noise input according to its frequency response. Since thet _

are as many possible "colors" to noise as there are frequency response curves, which is an uncountable infinity ¢

curves, we will necessarily restrict our attention to a few simple classes of coloring for illustrating specific cas K

The theory of digital filtering and time series analysis is covered in numerous texts (e.g. Ref. 16-19). For thf

discussion we will simply provide a few definitions to clarify the noise models that will be used in the sampl
cases that follow.

In the time domain, a linear, filter is defined by its impulse response which when convolved with its input, in ou
case white noise, produces the system output, colored noise. The variance of the output noise from a filter will b

given by the sum of squares of the impulse response sequence. In the examples shown we will routinel'

normalize the output variance to unity and have the plot scales cover +/- 3 standard deviations for consistency.

The most efficient way to generate colored noise for fairly simple processes is through linear difference equations

Care must be given to the initial conditions in the noise generation to assure immediately stationary realization in

statistical sense (Reference 19), otherwise the noise must be simulated for a period to reach a steady stat_
(particularly for long lag process simulations).

A stationary stochastic (noise) process is characterized by its autocovariance function or alternatively by the FourieJ

transform of the autocovariance function which is its power spectral density (PSD). The autocovariance is defined
as

_'(k) - E[ x(n} x(n+k) ] (l
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will refer to the autocorrelation function (ACF), which is the autoeovariance normalized by its value at zero

(which is its variance),
p(k) ,= ¥(k)

(20)
:e this is the noise characterization that enters directly into our formulas for evaluation of the colored noise

;cts on a least squares estimation accuracy, we note the autocorrelation functions for the sample noise

cesses presented below.

WHITE NOISE

ure 2 shows the appearance of white noise with uniform and Gaussian probability distributions, both of which

familiar to those with data processing experience. As stated earlier our definition of stationary white noise is

• that the data samples are independent and identically distributed. The most common assumption about the

:ribution is that it is Gaussian because of the tractable statistical properties. We will use the Gaussian noise as

ut to filters to simulate the colored noise shown here, but it is noted that the choice of uniform or Gaussian

ut distributions does not noticeably affect the appearance of the filtered noise. A result of the central limit

_rem is that the more heavily filtered the noise is, the more the output distribution will approach Gaussian no

xer what the input distribution.

te also that the number of data samples plotted and the plot scaling impacts the visual appearance of any noise.

use 400 points for each of the plots shown here for uniformity. The plot scales are set at the expected value

three standard deviations. Data quantization can also significantly impact the appearance, but we will not

_ulate quantization here.

White Noise

Uniform

Distribution

White Noise

Gaussian

Distribution

Figure 2. Sample White Noise with Uniform and Geusslan Distributions

l LOWPASS NOISE

simple single pole lowpass filter of white noise, w(n), is specified by the linear difference equation:

x(n) = # xCn-1) + w(n)
(21)

lere 4) is the pole location. This is known as a first order autoregressive process (AR(1)-a label we will use for

evity). It is also commonly called a first order stationary Marker process. The autoeorrelation for this process

given by

p(k) - ,Ikl
(22)
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Thus _ gives the correlation between consecutive samples. Samples of this type of noise for selected values of tb

are shown in Figure 3. The values of ¢_shown correspond to effective "time constants - T" (for the correlatio
to decay to I/e) of 2, 15, and 100 samples duration.

" 0.936 1" - 15

0 n 400

Figure 3. Sample Lowpass Noise with Selected Time Constants (400 Samples Plotted)

Since the general difficulty of inverting the noise covariance matrix R is sometimes cited as a reason for not attempting th
optimal weighting, it is interesting to note that for this particular noise model, the noise covariance matrix has an exact inve_

No!se Covar Iante

R i

1 # #2 #,,"

#z # 1

#

,_". # 1

1
W.. R'I .__

1_#Z

Opt Imal Welght Ing

1 .#

-+ 1+# 2 -¢_

-+ l+#Z

0

0

(2

Another type of lowpass filter is a simple N-point running average filter. The autocorrelatio[

function is a finite triangular shaped sequence:

Jkl
p(k) = 1- ----_--, Ik [ < N, 0 other'wtse (2,

A sample23-point runningaverage filter of the sameinput white noisesequenceis shown m Figure 4. Note the similarity
with the AR(1) processwith _ = .936. This similarity was emphasized by choosingthe numberof pointsso that the above
finite autocorrelation functionwasa simple linear approximationto the AR(1) exponential decaycurve. This illustrateshow

the appearance of many of the general visual features in the filtered noise are the same for filters with basically the same

short term correlations. The long tail in the AR(1) process does not significantly influence the visual appearance of the noise.

0 n 400

Figure 4. Sample 23-point Running Average Filter of White Nolle
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] HIGHPASS NOISE

7

e AR(I) lowlutM filter become8 a simple highptss filter for _ less than zero. A sample highptu noise plot is shown in

,_tre5. --u .... __-

Figure 5. Sample Highpass Noise, • - -0.607

; BANDPASS NOISE

generate noise with a selected frequency emphasis, we will utilize a simple two pole filter with complex

njugate roots so that our impulse response function remains real. This noise process is a second order

;oregressive AR(2) model or second order stationary Markov process. In terms of pole locations at radius r and

;le O around the unit circle, the linear difference equations for generating this noise are given by

x(n) - w(n) + 2r COle x(n-1) - rz x(n-2) (25)

• autocorrelation function is given by z
r k r co. (ke) + cos. 1-r s,n (k.)] (26)p(k)=

L s|nO l+r 2 J
Jo samples of noise generated in this way are shown in Figure 6 for a relatively high and relatively low

quency emphasis.
¢D - 0.936 • ,, 15 period - 10 sa_ole$

,d...!

(a) 1 cycle __/_.,_A_._I_._.A AI

per I0
samples

0 n 400

• n 0.935 • ,, 15 _=Z'iOd ,, 33 samplas

(b) l cycle . _ /'_/_ ._ _ A _ [\ _. A _
per 33

samples

0 n 400

F'qjure (I, Bandpm Filter Noise with Two Different Frequencies Emphasized

COMBINED NOISE MODELS

3ises of any particular types can be combined and it is important to note that a low amplitude of one "color" can

hidden by the dominance of another, although it seems that human eye and brain do a pretty good job of

;criminating patterns. For example, Figure 7 shows a combination of independent white noise of standard

viation 0.8 with the moderate lag lowpass noise, AR(1), _ equal to 0.936, of standard deviation 0.6 (the total

fiance is (0.6) = + (0.8) = ffi 1.0). The total effect on estimation accuracy will equal the combination of their

parate effects as noted in Section 2,5.
COllbLncld noJ.s41t wf_i_a .80" + .60" _ ,= .93'6

-3
0 n 400

Figure 7. Combined Noise Simple
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4. ESTIMATION OF THE MEAN

It is instructive to start with the simplest of cases in order to understand the effects of colored noise on estimation. Thus"

begin by reviewing the effects of colored noise in the estimation of the mean of a single sequence of measuremen

Although this is a simple case it can be considered as basically applicable to some attitude estimation cas_, for example i

spacecraft is inertially pointing and collecting star measurements under basically the same geometry. Further, when seve

parameters are being estimated, one of the parameters, a measurement bias for example, may essentially be computed
the mean of the measurements.

4.1 ACCURACY vs SAMPLES IN LOWPASS NOISE

We will start with the simplest lowlutss filter noise, a first order autoregressive p_ (AR(1)) or simple Markov process

defined in Equation 21. The partials of all measurements w.r.t the mean is 1, so the basis vector contains all 1 's, and t

unweighted estimate of the mean is the sample average. One can derive a formula for the uncertainty in the average as

estimator of the mean directly through slightly tedious algebra and recognition of the proper series summations. One obtaiz

Z 1 1 +_ 2_ 1_#N
0 _ •

AVG N 1-¢ N ( 1-_)

One can also compute the optimally weighted (or maximum likelihood) estimate of the mean, using the exact inverse noted
Equation (23) to obtain:

O=(_T _ 1 - _ + 2___... (
N

Results of the uncertainty in these various estimates of the mean are shown in Figure 8. Two different values for tl

correlation between samples are illustrated. Both the unweighted and weighted (suboptimal and optimal) estimates of t

mean are less accurate in the lowpass noise. It is interesting to note that the unweighted estimate of the mean is almost

accurate as the optimally weighted estimate even when the correlation between samples is fairly high. (The relati,

weighting of data points is give by the sum of the columns in the weight matrix (see Equation 23), so it is interesting to nc

that the optimal weighting for this noise model simply adds more weight to the end points. One interpretation of this is tit

the end points carry more information because of correlations with the data beyond the end points.) On the other hand, fi

white noise estimate of the w,curacy is unrealistically optimistic when significant Iowpess noise is present.

Standard o_,Q /
Deviation _ • = .936
of Mean

OOpT

Figure 8.

" e = .607

White Nolle
0

t It ;00

Standard Deviation of Mean vs Number of Samples, in Simple Lowpass Noise

4.2 ASYMPTOTIC RESULTS

A feature to note in Figure 8 is that the ratio of actual accuracy to that predicted by white noise appears consistent as th

number of samples gets large. In fact, it can be seen from the formulas (27) and (28) that ratio of the accuracy of both th

estimators to the accuracy assuming white noise converges to a limit for large N, which is given by:
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2 2
0` 0`

1 |m AVG _ 1 tm OPT -- ]+_

N.-xo 0`2 N-._ 02 1-¢ (29)
W

converllmce ratio, which applim toboth theunweightedand weighted least.quartoestimatm, is shown in Figure 9 as a

.tion of the correlatioa betwem samplm, _. Here the range of _ is allowed to go from -1 to 1 to illustrate effects from

eme highpmm toextremelowpmm noise.This illustrateshow the ,c,curacyintheeet_mms of themmm islower m lowlxms

z0 [

I

..... i

afaclimi

0

-i

Figure 9.

J/

f

Asymptotic Ratio for Colored vs White Noise Accuracy

;e, but higher in highpass noise. In the extreme case for highpass noise, the data may be osculating back and

h, but the expected value of the midpoint is nevertheless exactly the mean. "l_e extreme case for lowpass noise

random bias which we will discuss more later. In this case, the ratio goes to infinity because the white noise

_racy converges to zero. We will later see that for certain well behaved general multiparameter cases this

vergence ratio will apply approximately to all the paramet_'s.

PROJECTION INTERPRETATION

v let us take a first look at the correction factor interpretation previously discussed as it applies in this case. We

examine it in the time domain and make a brief note about the corresponding results in the frequency domain.

ure 10 illustrates the noise autocorrelation for this process and the basis vector autocorrelation for a short,

|ium and long data span. The basis function is a constant, the convolution with itself makes the autocorrelation

iangular pulse that is stretched out for longer data spans. Underneath each of the basis autocorrelation vectors is

product whose sum gives us the correction factor relative to the white noise accuracy. As the data span goes to

nity, the correction factor converges to the sum of the noise autocorrelation values which is a convergent

metric series.

Noise Autocorreletlon t
P 0

Basis Autocorrelation _ --
oeg

and product _ #

Short Span

Medium Span

Long Span

Figure 10. Projection Interpretation for Correction Factor to Estimate of the Mean
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It is easy to see from geometric arguments presented in this case that, more generally, the correction factor for

estimation of the mean will converge for any finite autocorrelation (MA or FIR process), or any process wb

the sum of the autocorrelation terms is finite. This sum is in fact finite for any ARMA stationary process.

proof of this asymptotic convergence ratio for the estimation of the mean is given in Reference 19 (Chapter 7).

4.4 INCREASING SAMPLES IN A FIXED DATA SPAN

Another aspect of the difference between white noise and colored noise is illustrated by considering an increas

number of sample points taken over a fixed data span. Under the ideal white noise model, no matter how clos_

time the samples are taken they are still independent, so the variance decreases as the inverse of the numbe_

samples. In actual practice however, one expects that as samples become very close in time, they become hig

dependent so that at some number of samples little additional accuracy can be obtained.

Figure 11 illustrates this for the sampling of an AR(I) process to estimate the mean. As the time between sam[

decreases, the correlations increase. The correlation as a function of time for the AR(I) process is modeled as

exponential. Let r be a time constant for the process, so the correlation between consecutive samples in a d
span of length T divided into N samples is given by

_(N) = •

Putting this expression for ¢_ in our formula for the variance of the average and taking the limit as N goes
infinity, we obtain:

1 tm ¢2 ..
N.-_e AVG

The limit for the optimally weighted estimate is

l|m

N-._e

2T -._ 2

T T2

¢2. 2:
OPT " _

Standard
Deviation
of Mean

1

0

and OOPT

guishable)

0

Figure 11.

N 80
k

Increasing the Number of Samples in a Fixed Data Span

5. SPIN AXIS ESTIMATION

We now apply the analysis to a case of estimating the spin axis attitude from a single data span of r(

measurements which may be from a horizon scanner. We will assume a simple geometry for the problem to pert

easier understanding of the results. The general nature of the results described can, however, be applied t(
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riety of similar attitude estimation scenarios. For example, it is similar to the computation of roll and yaw for an

rth pointing spacecraft with calibrated gyro data.

[ GEOMETRY FOR SAMPLE CASES

e geometry for our sample cases is shown in Figure 12. We will assume a circular orbit and have the satellite

in axis pointed at orbit normal, which idealizes a common mission geometry. To use round numbers (but

thout loss of generality), we assume a 1(30 minute period orbit, so that a data span of 10 minutes, is one tenth of

:orbit. In order to apply convenient labels to the attitude, we will assume a polar orbit, so right ascension and

:lination define the spin axis in the equatorial plane without any high declination scaling concerns.

is convenient for interpretation to choose orthogonal axes for the attitude state parameters which are oriented so

_t there is no coupling of the errors. This axis selection to decouple the parameters can be done in any least

_ares estimate. For our sample cases will make those axes correspond to right ascension and declination (labeled

k and DEC), by choosing our data span so that it is symmetric about the north pole point in the orbit. Thus the

tjor axis of the error ellipse for the spin axis will always be in the RA direction and the minor axis will be in the
-:C direction. To achieve generality for the orbit position one can read, instead of "RA" and "DEC," "the axis of

=.ate.stuncertainty', and "the axis of least uncertainty," respectively.

sed on this geometry, the matrix of partials of the roll measurements with respect to RA and DEC state

rameters is simply a sine and cosine function of the orbit angle relative to the middle of the data span at the North

|e.

- °

Data Span Chosen co$-fl s ln-D

_ Symmetric About Pole/
=

Figure 12. Geometry for Spin Axis Estimation Sample Cane

2 • SPIN AXIS ACCURACY VERSUS TIME IN LOW'PASS NOISE

gure 13 shows the DEC and RA accuracy versus time for 100 samples taken over ten minutes (1/10 orbit)
l_ere the correlation between consecutive samples is 0.607 (see Figure 7 for noise sample plot.) This corresponds

a 12 second time constant on the lowpass noise. The accuracy predicted in white noise is shown for

_mparison, and also shown is the optimally weighted estimator accuracy which is hardly different from the

_weighted estimator accuracy in this case.
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Figure 13. DEC end RA Accuracy Versus Time Over 10 Minutes

Notice that the DEC accuracy decreases in nearly exactly the same manner as the estimate for the mean illustrated

for the same correlation between samples in Figure 8. This is not surprising since the basis vector for the DEC

over this span, a small piece of a cosine wave, is very much like a constant. =

The RA accuracy improves with the increasing data span as expected from the improved geometry that makes RA

observable. Notice that the correction factor that applies to DEC estimates applies practically just as well to the PAl
estimates in this case.

Figure 14 illustrates the equivalent results for an extreme lowpass noise case (see Figure 7 for sample of noise).i

Here, something very interesting happens to the RA accuracy at very short data spans, where it is better than the

accuracy predicted in white noise. An interpretation of what is happening in this case shows how the lowpass

noise actually does provide better RA information. For a short data span the RA information is essentially

acquired from the slope which is fit to series of observations, since the RA basis vector is a small piece of a sine

wave. When the noise is highly filtered, a little piece of the data actually carries more reliable information about

the slope than a group of completely random white noise measurements. In the limiting case where _ = 1, the

data has a random bias, but a sequence of points still retains the proper slope which will be fit properly in a least
squares procedure. This limiting case is discussed further below.

Standard

Deviation
of Dec

10

0
0

Figure 14.

0
t 10 0 t 10

DEC end RA Accuracy for Extreme Lowpess Noise Case, •-.99

Standard
Deviation
of RA

5.3 EFFECT OF A RANDOM BIAS ON ACCURACY

In the limiting case where the correlation term _ = 1, the noise model provides the effect of a random bias (a bias

that is random for each data span). To the first order, a bias affects DEC by exactly the size of the bias, but does

not impact PA at all. Thus Equation 10 gives exactly this result.
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:e Equation 10 is valid for linear combinations of noise types, it is noteworthy that one can include a bias

ertainty along with any colored noise model for computing the estimation accuracy. An illustration of this is

limiting case of a combination of two AR(1) noise processes: one with a very short lag and one with a very

lag. In the limit, one may consider this as white noise plus a constant correlation term which is effectively a

term. If one normalizes the overall noise auto_rrelation f_nction to unity with this model, one will find that

RA accuracy actually improves relative to the white noise case, but it is important to recognize that one is just

ctively using a smaller white noise component along with the bias component which doesn't impact the RA

lracy at all. If one is careful to scale for a unity white noise component along with a bias term, the RA

_racy will improve exactly as without the bias, while the DEC accuracy, which is sensitive to the bias, will

rove with more observations but reach a limiting accuracy at the bias term. This result makes sense because a

t long term correlation must be expected to be exactly like a bias for a finite data span.

highlights the point that whatever noise spectrum may be worst for one parameter will not be worst for all

parameters. A very long term lag is worst for estimation of the mean, and is worst for the DEC estimation in

iatively short data span as discussed above, but it is certainly not the worst effect on RA. Furthermore since

is the most uncertain axis for this data span, long lags do not give the worst type of noise impact on the

:all spin axis accuracy. We will discuss the type of noise spectrum that can be worst on the overall accuracy,

it will be helpful to do that after we review the insights that can be gained from our projection interpretation.

PROJECTION INTERPRBTATION5

xre 15 shows the basis vector autocorrelation and basis vector power spectral densities for the RA and DEC in

i0 minute data span. The basis function for DEC, a small piece of a cosine wave, is very much like a

;tant, so the autocorrelation looks much like that for estimation of the mean as shown in Figure 9. The basis

or power spectral density 0iterally the discrete Fourier transform of the sampled autocorrelation) is practically

:onecker delta function. The basis function for RA, a small piece of a sine wave like a linear constant slope

, gives the "mustache shaped" autocorrelation shown. The power spectral density is zero at the zero

uency, indicating the zero mean of the autocorrelation, and shows a peak at the lowest sampling frequency of

Discrete Fourier Transform, and falls off rapidly with higher frequency. (Note the sampling frequencies of

DFT correspond to sine waves with integer numbers of cycles of the data period). The DFT highlights the

ntially low frequency content of these basis functions.

can see how any fairly short period correlation would cause similar effects in RA and DEC to the correction
3r to the white noise effects. Note that white noise is a delta function in the time domain and a constant in the

iuency domain. Thus a slightly broader noise autocorrelation in the time domain makes a correction factor

i_tly greater than one.

Auto-

correlation

DEC

-1
-100 100

RA

1 0.?

Power

Spectral

Density o I o

31 0 31

gure 15. Autocorrelation and Power Spectral Density for OEC Imd RA Basis Vectors for 10 Minute Span
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It is easy to see the expected effect of random bias on RA and DEC using the proJection interpretation. Note tt

a random bias autocorrelation function corresponds to constant value of I while the PSD is a Kronecker deJ

function (times N). "l'nus the bias has no effect on RA, while having maximum effect on DEC.

One can also use the projection interpretation to develop a sense of the worst type of noise to impact a paramet,

In general, one can select a noise model that has similar frequency content as the basis vector to maximum erroi

An extreme worst case might be a sine wave of exactly the dominant frequency of the basis. The autocorrelati,

function for a sine wave of random phase is a cosine function of the same frequency. In particular for RA in tt

case one can note by inspection of the basis autocorrelation that the worst frequency would have a period of six

2/3 of the data span length (it would change sign at the same point as the RA basis autocorrelation).

5.5 UNCERTAINTY VERSUS NOISE COLOR

We will apply the noise model generated by a simple 2 pole filter in order to show the sensitivity of our parame_

estimates to the frequency emphasis of the noise. We choose complex conjugate roots to define a real impul

response. The closeness of the poles to the unit circle roughly defines the narrowness of the passband, so we w

keep this distance fixed as we move the poles apart and around the unit circle to vary the peak frequency resporL¢

We are interested in the low frequency effects that we have predicted to impact our RA estimates. Thus we w

vary the peak frequency from near zero to about twice the frequency corresponding to the data span duration. T

autocorrelation function corresponding to this noise process is given by Equation (26).

The attitude accuracy in RA and DEC in response to a moderately narrowband noise and to an extreme

narrowband noise is shown in Figure 16. The extremely narrowband noise may be thought of practically as a s_

wave of fixed frequency and unit amplitude but random phase. As predicted by the discussion in the previo_

subsection, the frequencies near 2/3 of the data span frequency have the worst effect on RA accuracy. The DE

accuracy, on the other hand, improves as the dominant frequencies get higher.

The accuracies that would result from the optimal data weighting are included in Figure 16, illustrating that in

colored noise case the weighting can make a significant difference to the estimator accuracy.

Relatively

Widebsnd

Spectrum

DEC FLA

o
0 wi 0.3 0 ¢a.t. 0.3

It k
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Spectrum

o
ul O. 3 0 wl O. ]
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(Upper curve for suboptimal/unweighted estimator; lower curve for optimal/weighted estimator)

Figure 16. Standard Deviation Uncertainty Versus Low Frequency Noise From 0 to 2 Cycles Per Date Span
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; EXPECTED EFFECTS FOR LONGER DATA SPANS

looking at how the basis vector autocorrelation and power spectal density change as the data span increases, it
_ossible to make some general predictions about the effects that may be expected from colored noise and biases

longer data spans are used. Figure 17 shows the EA and DEC basis vectors and their autocorrelation functions

•selected lengths of data spans. The characteristic shapes seen in Figure 15 for the short span is still seen until
)re than about half an orbit is accumulated. Thus RA remains most sensitive to noise periods of about 2/3 of

._data span and DEC remains most sensitive to random biases. As the data span gets beyond one orbit the
:ocorrelation functions for RA and DEC undergo a transition in their shapes so that for two or more orbits both

; similar: a cosine function shaped by a triangular window in amplitude. (In the limit of long spans, this
_strates how the cosine wave is the autocorrelation for a signal with random phase.) The power spectral density

ewise undergoes transition from DEC sensitive to the zero frequency and P,A sensitive to just the two lowest

n-zero frequencies in the discret transform, evolving to both 1_, and DEC sensitive primarily to the orbit

quency.
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Figure 17. Basis Vectors and Their Autocorrelation Function for Longer Data Spans

us in multi-orbit data spans, neither RA nor DEC is sensitive to a random bias, and both are most sensitive to

ise frequencies at orbital frequency. Since many physical phenomena occur at orbit frequencies (e.g.,

acecraft temperatures, orbit altitude, atmospheric drag, magnetic field changes, and science instrument

erations), it is a useful to remember that any unmodeled or random aspects of their effects on sensor

•.asurements ate a potential source of noise with frequency content to which attitude solutions are most sensitive.

_e effects of relatively short term correlations, on the other hand, can be shown to remain quite constant in
:ms of a correction factor as the data span increases. To understand this, keep in mind that the time scales are

:teasing in Figures 17 (a) through (c), and an autocorrelation function representing short term correlations stays

:iueezed with the time scale) inside the main central peak which is always found. Thus the correction factor

)m the projection can be expected to converge quickly.

BRIEF DISCUSSION OF GENERAL RESULTS

]e results described above can be generalized for what we can call "well behaved cases:" those where the basis

_tor frequency content is low relative to the data sampling frequency. This would apply, for example, to any
t of orthogonal low order polynomials. An ideal set of basis vectors from the frequency analysis standpoint is a

lite Fourier series; then the basis vector power spectral densities are spikes at each of the lowest frequencies in

e discrete transform. Polynomials would show a similar behavior with each term of higher order showing a
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For thesecaseswe can expectthatthe effectsof shortperiodcorrelationscan be accomodated by a correctio_

factor in predicting the estimator accuracy, and unweighted least squares will perform almost as well as optima

weighting. Cases where short term correlations can still impact the accuracy significantly will occur, fo

example, in cases where the discrimination of two basis vectors relies heavily on a relatively few observatio_
close in time.

7. CONCLUSIONS

Techniques for analyzing the effects of colored noise on unweighted least squares accuracy have been explored, an_

an illuminating interpretation of the effects has been presented. These ted3mques were applied to some simple bu

representative sample cases to show the colored noise impacts. More work remains to be done to apply thesi

techniques to additional and more complex cases, but nevertheless certain important conclusions may be draw_
from the general analysis and the cases already explored.

, If a model for the actual noise correlations is available, the actual accuracy of the unweighted estimator cal

be evaluated directly (without requiring a matrix inverse). This is recommended.

. In certain commonly encountered well behaved cases (moderately lowpa_ noise and very low frequenc._

content in the basis functions), the effects of relatively short period correlations can be accommodated by
simple correction factor to the white noise accuracy. This can be applied as a correction to the assumec
white noise standard deviation.

. In these well behaved cases the optimally weighted estimator does not perform a lot better than th_

unweighted estimator. In this sense the unweighted least squares can be justified with colored noise, but th_

proper formula should be used to compute the expected uncertainty of the parameter estimates.

+ In general noise frequencies that are concentrated near the frequencies of the basis functions have th_

greatest impact on the accuracy of the corresponding parameter, as might be expected. This is quantifiec
mathematically in the frequency domain projection interpretation of the white noise correction factor.

. Noise frequencies with corresponding periods of about 2/3 the data span length have the worst impact
when an approximately linear (constant slope) term is being fit to the data.

, Shorter data spans can be expected to be more sensitive to noise correlations particularly because

correlations with time constants on the order of the dataspan are more likely.

o The techniques described here can also be used to consider the effects of random biases on the solution

accuracy.

Much further work can be done to extend the above results more generally and also more specifically to relevant

applications, "r'ne author believes there is yet more to be explored in the relationship between spectral analysis
and least squares solution accuracy. Since noise spectral content is shown to have a notable effect on the

predicted accuracy of data fits, a key to improved knowledge of actual accuracies is improved knowledge of the
spectral content of sensor noise.
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